top of page
1c1db09e-9a5d-4336-8922-f1d07570ec45.jpg

Category:

Category:

Reranking

Category:

Retrieval & RAG

Definition

Reordering retrieved results to optimize relevance before sending to an LLM.

Explanation

Reranking improves retrieval by using cross-encoders or LLM-based ranking models. It helps ensure only the most relevant chunks are passed into the context window. Reranking is essential for high-accuracy RAG pipelines and grounding-sensitive tasks like legal QA, research workflows, and analytics agents.

Technical Architecture

Top-K Retrieved Docs → Reranker (Cross Encoder or LLM) → Ranked List → Context Packager → LLM

Core Component

Cross-encoder model, LLM reranking, metadata filters, scoring heuristics

Use Cases

Search, RAG pipelines, enterprise QA, analytics

Pitfalls

Latency overhead, cost due to LLM reranking, mis-ranked results

LLM Keywords

Reranking, Cross-encoder Ranking, Retrieval Optimization

Related Concepts

Related Frameworks

• Vector Search
• Hybrid Retrieval
• Chunking

• Retrieval Optimization Framework

bottom of page