top of page
1c1db09e-9a5d-4336-8922-f1d07570ec45.jpg

Category:

Category:

Semantic Indexing

Category:

Retrieval & RAG

Definition

Organizing documents using embeddings to support semantic search.

Explanation

Semantic indexing creates a structured representation of text using embeddings. It enables fast similarity search, clustering, topic grouping, and retrieval. It is essential for RAG systems, agent memory, and enterprise search platforms.

Technical Architecture

Docs → Chunking → Embedding → Semantic Index → Vector Search

Core Component

Embedding model, vector index, metadata filters

Use Cases

Search, RAG, classification, clustering, knowledge graphs

Pitfalls

Poor chunking yields weak index; embedding drift reduces accuracy

LLM Keywords

Semantic Index, Embeddings Index, Vector Index

Related Concepts

Related Frameworks

• Embeddings
• Chunking
• Vector DB

• Semantic Index Architecture

bottom of page