top of page
1c1db09e-9a5d-4336-8922-f1d07570ec45.jpg

Category:

Category:

Vector Database

Category:

Retrieval & RAG

Definition

Stores embeddings for semantic search and similarity retrieval.

Explanation

Vector DBs enable similarity search across large embedding datasets—critical for RAG, search, and agent memory systems.

Technical Architecture

Text → Embedding → Vector Store → Similarity Search → LLM

Core Component

Embedding index, HNSW graphs, metadata filters, vector search engine

Use Cases

RAG retrieval, semantic search, memory systems, recommendations

Pitfalls

Wrong distance metrics, irrelevant chunks, slow retrieval latency

LLM Keywords

Vector Search, Embedding Database

Related Concepts

Related Frameworks

• Embeddings
• Chunking
• Reranking
• Semantic Search

• Vector DB comparison framework

bottom of page