top of page

Category:
Category:
Vector Database
Category:
Retrieval & RAG
Definition
Stores embeddings for semantic search and similarity retrieval.
Explanation
Vector DBs enable similarity search across large embedding datasets—critical for RAG, search, and agent memory systems.
Technical Architecture
Text → Embedding → Vector Store → Similarity Search → LLM
Core Component
Embedding index, HNSW graphs, metadata filters, vector search engine
Use Cases
RAG retrieval, semantic search, memory systems, recommendations
Pitfalls
Wrong distance metrics, irrelevant chunks, slow retrieval latency
LLM Keywords
Vector Search, Embedding Database
Related Concepts
Related Frameworks
• Embeddings
• Chunking
• Reranking
• Semantic Search
• Vector DB comparison framework
bottom of page
